Skip to main content

NSF awards $11.7 million to Materials Research Center

September 27, 2000 By Renee Meiller

The National Science Foundation has announced an award of $11.7 million over five years to the Materials Research Science and Engineering Center.

The campuswide center, based in the College of Engineering, is one of 11 existing NSF materials centers nationwide that together will receive a total of $110 million over five years. Academic institutions, state governments and industry partners also will contribute substantial support.

“New materials designed at the atomic and molecular level provide the basis for rapid advances in such areas as computing, high-speed communications, information storage, cell biology, and polymer development and production,” says College of Engineering Dean Paul Peercy. “This NSF award will enable UW–Madison researchers to understand and develop new materials along with the processes to fabricate these materials to advance such cutting-edge technologies.”

Materials research centers work closely with industry and other economic sectors to identify and address key obstacles to future materials development. Today, much of the work occurs at nanoscale dimensions, requiring specialized equipment and expertise to create materials with new properties that could continue to revolutionize consumer and industrial products.

NSF established a materials research center at UW–Madison in 1996 with a five-year, $10.6 million grant. Research in this center involves more than 30 faculty and staff members from six departments, the School of Veterinary Medicine, other universities and industry. The center’s research focuses on the mechanisms associated with integrating materials onto silicon, the semiconductor industry’s “workhorse material.” The center also investigates grain boundaries in high-temperature superconductors, and the role of nanostructured textured surfaces on the growth and behavior of biological systems such as cells and viruses.

“Nanostructured materials are at the forefront of modern materials science, and the UW–Madison center is a leader in developing these materials,” says Director Thomas Kuech, a professor of chemical engineering. “In addition, there are wonderful opportunities for both discovery and training students at the undergraduate and graduate levels. Our center brings together researchers and students from a number of engineering and science disciplines to work in the team-based environment required to address important issues in this field.”

The two largest research groups in the UW–Madison center focus on areas that, despite their technological significance, have not been studied comprehensively and fundamentally at other institutions. One group investigates materials structures that may lead to the development of whole systems on a chip. The center also has been a leader in understanding how detailed microstructure affects modern superconductor properties.

This second group couples experimental studies of grain-boundary properties with electronic studies and theoretical modeling. Grain boundaries are the primary obstacle to the flow of superconducting current in these materials, and these studies are paving the way to practical high-temperature superconductors. In the future, researchers could use these improved superconducting materials in such applications as highly efficient power transmission.

An emerging research area within the UW–Madison center focuses on integrating nanostructured surfaces into biological systems. Applications of this work include improved cell culture systems, tissues for artificial organs, and new biological sensors. The center’s smaller exploratory research programs include the development of new composite materials based on nanosized composites as well as new means to characterize the properties of nanoparticles.

Advances emerging from NSF’s 29 materials research centers include new types of magnetic devices for information storage, nanoparticle assemblies linked by DNA, a superelastic form of the widely used plastic polypropylene and the ability to induce chemical reactions on a chip.

“The products of modern materials research impact our economy and our everyday lives,” says Thomas Weber, director of NSF’s Division of Materials Research. “The centers address fundamental science and engineering problems in the creation of new materials. They also provide students a highly interdisciplinary education that is prized by potential employers in industry, academia and government.”

More information can be found on the center’s web site at http://www.mrsec.wisc.edu; or the NSF site at http://www.nsf.gov/mps/dmr/mrsec.htm.